Gait improvement with decreased tibialis anterior recruitment after botulinum toxin injections into peroneus longus in very young children with hemiparetic cerebral palsy

BOULAY Christophe¹², **CHABROL Brigitte**¹, **JOUVE Jean-Luc**², **GRACIES Jean-Michel**³

¹ Pediatric Neurology Department, Timone Children Hospital, Marseille, France
² Gait Lab, Pediatric Orthopaedic Surgery Department, Timone Children Hospital, Marseille, France
³ Department of Neurorehabilitation, Henri Mondor University Hospital, Créteil, France

Introduction

In very young cerebral palsy (CP) children, peroneus longus (PL) overactivity by spastic cocontraction (Gracies, 2005; Vinti 2018) is a major contributor to dynamic equinovalgus during swing phase (SW) and at initial contact (IC) (Boulay, 2012). This study assessed the effects of abobotulinumtoxinA injections into PL.

Methods

11 male children with hemiparesis (7 right; age 3.1±0.6 yo)
only one injection in Peroneus Longus, without GastroSoleus Complex(GSC) injection
GSC was assessed for functional length (X1), and spasticity (X2)
Gait analysis videos were evaluated using the Edinburgh Visual Gait Score (EVGS)-validated in CP): pre vs post-injection values were compared using paired t-tests.
EMG monitored tibialis-anterior (TA), gastrocnemius-medialis (GM) and PL during gait.

Swing phase was divided into three equal periods (T1, T2, T3) to measured: during SW (SW T1, SW1, SW2, SW3): GM and PL cocontractions and TA recruitment and during standing: on tiptoes (EMGmaxPL, EMMaxGM, on heels(EMGmaxTA)

Results

For each measured EMG variable (SW and standing), efficacy index (normalized) was assessed using the ratio:
\[
\text{Efficacy index} = \frac{\text{EMG}_{\text{variable X POST}}}{\text{EMG}_{\text{variable X PRE}}}
\]

Each efficacy index was compared with an inefficacy theoretical index of 0.

Conclusions

no side effect (no taulus, no drastic paretic effect)
Foot clearance is improved, *hindfoot* is decreased
In knee extended, GSC spasticity (X2) (NON INJECTED) switched to the dorsal flexion after PL injection which is correlated with a significant knee re-extension in terminal SW (EVGS).
It was associated with reductions of PL and GM cocontractions
TA is the antagonistic muscle of PL.
This constitutes an argument supporting that increased TA recruitment in children with hemiparesis may be an attempt by the nervous system to compensate for plantar flexor cocontraction rather than the opposite (increased plantar flexor cocontraction due to increased TA recruitment)
we can discuss a central action of abobotulinumtoxin A

References

Gracies JM, Muscle and Nerve, 2005